skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Huang, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Global climate models (GCMs) are unable to produce detailed runoff conditions at the basin scale. Assumptions are commonly made that dynamical downscaling can resolve this issue. However, given the large magnitude of the biases in downscaled GCMs, it is unclear whether such projections are credible. Here, we use an ensemble of dynamically downscaled GCMs to evaluate this question in the Sierra‐Cascade mountain range of the western US. Future projections across this region are characterized by earlier seasonal shifts in peak flow, but with substantial inter‐model uncertainty (−25 ± 34.75 days, 95% confidence interval (CI)). We apply the emergent constraint (EC) method for the first time to dynamically downscaled projections, leading to a 39% (−28.25 ± 20.75 days, 95% CI) uncertainty reduction in future peak flow timing. While the constrained results can differ from bias corrected projections, the EC is based on GCM biases in historical peak flow timing and has a strong physical underpinning. 
    more » « less
  2. The development of offshore wind technology has become a feasible solution to meet the increasing demands for clean and renewable energy. The United States has a total of 4250GW offshore wind energy potential; however, 65% of it is in deep water zones (Lopez et al., 2022) where wind turbines with fixed foundations typically are economically and technically unfeasible. In those situations, floating turbines supported by subsea anchors are a more competitive solution. Based on previous studies, ring anchors can be more material-efficient than piles and caissons because they require less material. Ring anchors also perform better than drag anchors due to their greater embedment depth. To further understand the behavior of ring anchors in saturated sand, a series of centrifuge load tests were performed at the University of California Davis Center for Geotechnical Modeling (CGM) at an acceleration of 70g. This test series investigated the effect of the anchor embedment depth and loading angle on the monotonic loading behavior. The ring anchor models were embedded in dense saturated sand, and then connected to an actuator using taut steel wire ropes. Sensors were used to measure the line tension, displacement, and inclination. The results indicate that the ring anchors mobilize greater capacities as their embedment depth is increased and when they are loaded at angles close to the horizontal direction, while vertical loading leads to the smallest capacity. The anchor displacement during the tests deviated slightly from the loading direction, showing a horizontal deviation at the earlier stages of the tests and a vertical one after the peak load. Furthermore, soil disturbance induced by the anchor installation was found to have a strong effect on the vertical capacity of the ring anchors. Overall, this study provides valuable information regarding the monotonic loading behavior of ring anchors which can aid in their future field deployment. 
    more » « less